Second Order Pdes with Dirichlet White Noise Boundary Conditions
نویسندگان
چکیده
In this paper we study the Poisson and heat equations on bounded and unbounded domains with smooth boundary with random Dirichlet boundary conditions. The main novelty of this work is a convenient framework for the analysis of such equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space of distributions. Then we prove that the solutions can be identified as smooth functions inside the domain, and finally the rate of their blow up at the boundary is estimated. A large class of noises including Wiener and fractional Wiener space time white noise, homogeneous noise and Lévy noise is considered.
منابع مشابه
Dirichlet Problem for Stochastic Parabolic Equations in Smooth Domains
A second-order stochastic parabolic equation with zero Dirichlet boundary conditions is considered in a sufficiently smooth bounded domain. Existence, uniqueness, and regularity of the solution are established without assuming any compatibility relations. To control the solution near the boundary of the region, special Sobolev-type spaces with weights are introduced. To illustrate the results, ...
متن کاملA Second-Order Immersed Boundary Projection Method for Elliptic and Parabolic Problems
We present a second-order accurate version of the Immersed Boundary Projection Method for imposing Dirichlet boundary conditions at irregular boundaries while using a Cartesian grid and a standard discretization, applicable to elliptic and parabolic PDEs. No modi cation to the stencil is required. Rather, boundary conditions are enforced by applying a force at the boundary that is unknown a pri...
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملA Stochastic Optimal Control Problem for the Heat Equation on the Halfline with Dirichlet Boundary-noise and Boundary-control
We consider a controlled state equation of parabolic type on the halfline (0,+∞) with boundary conditions of Dirichlet type in which the unknown is equal to the sum of the control and of a white noise in time. We study finite horizon and infinite horizon optimal control problem related by menas of backward stochastic differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013